Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## Yuan-Fu Deng, ${ }^{a}$ Zhao-Hui Zhou, ${ }^{\text {a* }}$ Hui-Lin Wan ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a Department of Chemistry and State Key }}$ Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,
People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zhzhou@xmu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.048$
$w R$ factor $=0.094$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## $\Delta$-Aqua-S-citrato(2-)manganese(II)

The citrato(2-) ligand in aquacitrato(2-)manganese(II), $\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, chelates the Mn atom through the $\alpha$-hydroxyl, the $\alpha$-carboxyl and one $\beta$-carboxyl O atom, while the other $\beta$-carboxylic acid group remains uncoordinated. Each O atom of the $\alpha$-carboxyl groups is bonded to an adjacent Mn atom, leading to octahedral Mn and a helical chain. Neighboring chains are consolidated into a tightly held crystal structure by hydrogen bonds.

## Comment

The chemistry of metal derivatives of citric acid is of interest owing to the importance of this acid in physiological processes (Glusker, 1980; Mayers et al., 2002). An early structural study of a 3:2 Mn derivative of citric acid had documented a compound having the formulation $\left[\mathrm{Mn}\left(\mathrm{OH}_{2}\right)_{6}\right]\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.\right.$ $\left.\left.\mathrm{O}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Carrell \& Glusker, 1973; Glusker \& Carrell, 1973). A more recent study reported $\left[\mathrm{NH}_{4}\right]_{4}\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\right]$ (Matzapetakis et al., 2000), which is obtained from a neutral solution containing a 1:2 molar ratio of $\mathrm{Mn}^{2+}$ and citric acid. Moreover, a solid $1: 1$ complex formulated as $\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ has been characterized with IR spectra and elemental anaylses (Fujita, 1982; Kemmett et al., 2001). In our work, acidic conditions yielded a 1:1 Mn-citrate complex as a monohydrate, with a free $\beta$ carboxylic acid group (Fig. 1 and Table 1). The citrate dianion chelates, in tridentate mode, to the water-coordinated Mn atom through two carboxyl and one $\alpha$-hydroxyl O atoms. The bonded O atom of the $\alpha$-carboxyl group is further coordinated to an adjacent Mn atom $\left[\mathrm{Mn}-\mathrm{O}^{\mathrm{i}} 2.290\right.$ (3) $\AA$; symmetry code: (i) $\left.\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right]$, and the other O atom of this carboxyl group is also bonded strongly to another Mn atom $\left[\mathrm{Mn}-\mathrm{O}^{\mathrm{ii}}\right.$ 2.142 (3) Å; symmetry code: (ii) $1+x, y, z]$. The Mn atom thereby exists in an octahedral coordination geometry. Adjacent molecules are linked by a screw axis, to form a helical chain running along the $a$ axis of the crystal (Fig. 2). Neighboring chains are consolidated into a tightly held chain structure by hydrogen bonds (Table 2).

(I)

## Experimental

Manganese dichloride ( $0.99 \mathrm{~g}, 5 \mathrm{~mol}$ ) and citric acid monohydrate $(2.10 \mathrm{~g}, 10 \mathrm{mmol})$ were dissolved in water $(10 \mathrm{ml})$. The pH of the

## Received 17 April 2003

 Accepted 29 April 2003 Online 9 May 2003

Figure 1
ORTEPII (Johnson, 1976) plot of aquacitrato(2-)manganese, with ellipsoids drawn at the $50 \%$ probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$ (ii) $1+x, y, z ;$.]


Figure 2
ORTEPII (Johnson, 1976) plot, depicting the helical chain propagating along the $a$ axis.
solution was adjusted to $1.5-3.0$ by the addition of aqueous ammonia. The mixture was warmed and then filtered. The solution was left in a refrigerator for several days. Colorless crystals of the compound were obtained in $90 \%$ yield. Elemental analysis. Found (calculated) for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{8} \mathrm{Mn}$ (\%): C 27.1 (27.4), H 2.8 (3.1). IR (KBr): 3481, 3397, 2974, $2292,2618,2531,1732,1594,1546,1475,1417,1395,1323,1284,1260$, $1153,1072,890.581,540 \mathrm{~cm}^{-1}$.

## Crystal data

```
[Mn(C66 H6 O
Mr}=263.0
Orthorhombic, P2 2 2 2 2 
a=6.030 (1) \AA
b=10.467 (1) \AA
c=13.568 (1) \AA
V=856.4 (2) \AA \AA
Z=4
Dx}=2.040\mp@subsup{\textrm{Mg m}}{}{-3
```

Mo $K \alpha$ radiation
Cell parameters from 2130
reflections
$\theta=2.5-28.2^{\circ}$
$\mu=1.57 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colorless
$0.29 \times 0.09 \times 0.08 \mathrm{~mm}$

## Data collection

Bruker APEX area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.662, T_{\text {max }}=0.889$
5277 measured reflections

## Refinement

Refinement on $F^{2}$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0243 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.094$
$w R=0.048$
$+1.1167 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.011$
$\Delta \rho_{\max }=0.50 \mathrm{e}^{\circ} \AA^{-3}$
1936 reflections
160 parameters
Only coordinates of H atoms refined

1936 independent reflections
1914 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 13$
$l=-17 \rightarrow 17$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack \& Schwarzenbach (1988), 759 Friedel pairs
Flack parameter $=0.05(3)$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Mn} 1-\mathrm{O} 1$ | $2.139(3)$ | $\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{ii}}$ | $2.140(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Mn} 1-\mathrm{O} 2$ | $2.292(3)$ | $\mathrm{Mn} 1-\mathrm{O} 4$ | $2.195(3)$ |
| $\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.142(3)$ | $\mathrm{Mn} 1-\mathrm{O} 1 w$ | $2.166(3)$ |
|  |  |  |  |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$ | $72.4(1)$ | $\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 2$ | $163.6(1)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$ | $178.4(1)$ | $\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$ | $89.9(1)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{ii}}$ | $91.6(1)$ | $\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 4$ | $95.9(1)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 4$ | $83.5(1)$ | $\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 1 w$ | $92.0(1)$ |
| $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 w$ | $92.4(1)$ | $\mathrm{O}^{2}-\mathrm{Mn} 1-\mathrm{O} 2$ | $79.2(1)$ |
| $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2$ | $106.15(9)$ | $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{O} 2$ | $92.2(1)$ |
| $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1 w$ | $87.1(1)$ | $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{O} 4$ | $171.2(1)$ |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 4$ | $96.9(1)$ |  |  |

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (ii) $1+x, y, z$.

Table 2
Hydrogen-bonding geometry ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1-\mathrm{H} 1 o \cdots \mathrm{O} 5^{\text {iii }}$ | 0.85 | 1.75 | 2.594 (4) | 178 |
| O6-H6o $\cdots \mathrm{O}^{\text {iv }}$ | 0.85 | 1.81 | 2.652 (4) | 173 |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4^{\mathrm{i}}$ | 0.85 | 2.10 | 2.871 (4) | 152 |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O}^{\mathrm{v}}$ | 0.85 | 1.90 | 2.737 (4) | 172 |

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (v)
$\frac{1}{2}+x, \frac{3}{2}-y, 1-z$.
H atoms of the hydroxyl group and the water molecule and Cbound H atoms were located and refined, subject to $\mathrm{O}-\mathrm{H}=$ $0.85(1) \AA, \mathrm{C}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$, and their displacement parameters were set to 1.2 times those of their parent atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant Nos. 29933040 and 20021002), the Ministry of Science and Technology of China (001CB108906), and the University of Malaya (F0717/2002A) for supporting this work.

## References

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Carrell, H. L. \& Glusker, J. P. (1973). Acta Cryst. B29, 638-640.
Flack, H. D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
Fujita, T. (1982). Chem. Pharm. Bull. 30, 3461-3465.
Glusker, J. P. (1980). Acc. Chem. Res. 13, 345-352.
Glusker, J. P. \& Carrell, H. L. (1973). J. Mol. Struct. 15, 151-159.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kemmitt, T., Mills, A. M. \& Gainsford, G. J. (2001). Aust. J. Chem. 54, 37-41. Matzapetakis, M., Karligiano, N., Bino, A., Dakanali, M., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Giapintzakis, J. \& Salifoglou, A. (2000). Inorg. Chem. 39, 4044-4051.
Mayers, S. M., Gormal, C. A., Smith, B. E. \& Lawson, D. M. (2002). J. Biol. Chem. 277, 35263-35266.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

