metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yuan-Fu Deng,^a Zhao-Hui Zhou,^a* Hui-Lin Wan^a and Seik Weng Ng^b

^aDepartment of Chemistry and State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: zhzhou@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.006 Å R factor = 0.048 wR factor = 0.094 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Δ -Aqua-S-citrato(2–)manganese(II)

The citrato(2–) ligand in aquacitrato(2–)manganese(II), [Mn(C₆H₆O₇)(H₂O)], chelates the Mn atom through the α -hydroxyl, the α -carboxyl and one β -carboxyl O atom, while the other β -carboxylic acid group remains uncoordinated. Each O atom of the α -carboxyl groups is bonded to an adjacent Mn atom, leading to octahedral Mn and a helical chain. Neighboring chains are consolidated into a tightly held crystal structure by hydrogen bonds.

Comment

The chemistry of metal derivatives of citric acid is of interest owing to the importance of this acid in physiological processes (Glusker, 1980; Mayers et al., 2002). An early structural study of a 3:2 Mn derivative of citric acid had documented a compound having the formulation $[Mn(OH_2)_6][Mn(C_6H_5-$ O7)(H2O)]2·2H2O (Carrell & Glusker, 1973; Glusker & recent study Carrell, 1973). Α more reported $[NH_4]_4[Mn(C_6H_5O_7)_2]$ (Matzapetakis et al., 2000), which is obtained from a neutral solution containing a 1:2 molar ratio of Mn²⁺ and citric acid. Moreover, a solid 1:1 complex formulated as $[Mn(C_6H_6O_7)(H_2O)]$ has been characterized with IR spectra and elemental analyses (Fujita, 1982; Kemmett et al., 2001). In our work, acidic conditions yielded a 1:1 Mn-citrate complex as a monohydrate, with a free β carboxylic acid group (Fig. 1 and Table 1). The citrate dianion chelates, in tridentate mode, to the water-coordinated Mn atom through two carboxyl and one α -hydroxyl O atoms. The bonded O atom of the α -carboxyl group is further coordinated to an adjacent Mn atom $[Mn - O^{i} 2.290 (3) \text{ Å}; symmetry code:}$ (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z], and the other O atom of this carboxyl group is also bonded strongly to another Mn atom [Mn-Oⁱⁱ 2.142 (3) Å; symmetry code: (ii) 1 + x, y, z]. The Mn atom thereby exists in an octahedral coordination geometry. Adjacent molecules are linked by a screw axis, to form a helical chain running along the *a* axis of the crystal (Fig. 2). Neighboring chains are consolidated into a tightly held chain structure by hydrogen bonds (Table 2).

Experimental

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Manganese dichloride (0.99 g, 5 mol) and citric acid monohydrate (2.10 g, 10 mmol) were dissolved in water (10 ml). The pH of the

Received 17 April 2003 Accepted 29 April 2003 Online 9 May 2003

Schwarzenbach (1988), 759

Flack parameter = 0.05(3)

Friedel pairs

 $I > 2\sigma(I)$

Figure 1

ORTEPII (Johnson, 1976) plot of aquacitrato(2-)manganese, with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z (ii) 1 + x, y, z;.]

Figure 2

ORTEPII (Johnson, 1976) plot, depicting the helical chain propagating along the *a* axis.

solution was adjusted to 1.5-3.0 by the addition of aqueous ammonia. The mixture was warmed and then filtered. The solution was left in a refrigerator for several days. Colorless crystals of the compound were obtained in 90% yield. Elemental analysis. Found (calculated) for C₆H₈O₈Mn (%): C 27.1 (27.4), H 2.8 (3.1). IR (KBr): 3481, 3397, 2974, 2292, 2618, 2531, 1732, 1594, 1546, 1475, 1417, 1395, 1323, 1284, 1260, 1153, 1072, 890. 581, 540 cm^{-1} .

Crystal data

 $[Mn(C_6H_6O_7)(H_2O)]$ $M_r = 263.06$ Orthorhombic, P212121 a = 6.030 (1) Åb = 10.467 (1) Åc = 13.568(1) Å V = 856.4 (2) Å Z = 4 $D_x = 2.040 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 2130 reflections $\theta = 2.5 - 28.2^{\circ}$ $\mu = 1.57 \text{ mm}^{-1}$ T = 298 (2) KPlate, colorless $0.29 \times 0.09 \times 0.08 \text{ mm}$

Data collection

Bruker APEX area-detector	1936 independent reflections
diffractometer	1914 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.037$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.2^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 7$
$T_{\min} = 0.662, \ T_{\max} = 0.889$	$k = -7 \rightarrow 13$
5277 measured reflections	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0243P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.094$	+ 1.1167P]
wR = 0.048	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.21	$(\Delta/\sigma)_{\rm max} = 0.011$
1936 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
160 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
Only coordinates of H atoms	Absolute structure: Flack &

Table 1

refined

Selected geometric parameters (Å, °).

Mn1-O1	2.139 (3)	Mn1-O3 ⁱⁱ	2.140 (4)
Mn1-O2	2.292 (3)	Mn1-O4	2.195 (3)
Mn1-O2 ⁱ	2.142 (3)	Mn1–O1w	2.166 (3)
$\Omega_1 - M_{n1} - \Omega_2$	72 4 (1)	Ω^{3ii} Mn1 Ω^2	163.6 (1)
$O1-Mn1-O2^{i}$	178.4 (1)	$O3^{ii}$ -Mn1- $O2^{i}$	89.9 (1)
$O1-Mn1-O3^{ii}$	91.6(1)	O3 ⁱⁱ -Mn1-O4	95.9 (1)
O1-Mn1-O4	83.5 (1)	$O3^{ii}-Mn1-O1w$	92.0 (1)
O1-Mn1-O1w	92.4 (1)	O4-Mn1-O2	79.2 (1)
O2 ⁱ -Mn1-O2	106.15 (9)	O1w-Mn1-O2	92.2 (1)
$O2^{i}-Mn1-O1w$	87.1 (1)	O1w-Mn1-O4	171.2 (1)
$O2^i - Mn1 - O4$	96.9 (1)		

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$; (ii) 1 + x, y, z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H10···O5 ⁱⁱⁱ	0.85	1.75	2.594 (4)	178
O6−H6o···O5 ^{iv}	0.85	1.81	2.652 (4)	173
$O1w - H1w2 \cdots O4^{i}$	0.85	2.10	2.871 (4)	152
$O1w - H1w1 \cdots O7^{v}$	0.85	1.90	2.737 (4)	172

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 - z; (iii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iv) $\frac{1}{2} - x$, 1 - y, $\frac{1}{2} + z$; (v) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z.$

H atoms of the hydroxyl group and the water molecule and Cbound H atoms were located and refined, subject to O-H =0.85(1) Å, C-H = 0.85(1) Å and H···H = 1.39(1) Å, and their displacement parameters were set to 1.2 times those of their parent atoms

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (grant Nos. 29933040 and 20021002), the Ministry of Science and Technology of China (001CB108906), and the University of Malaya (F0717/2002A) for supporting this work.

References

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Carrell, H. L. & Glusker, J. P. (1973). Acta Cryst. B29, 638-640.
- Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
- Fujita, T. (1982). Chem. Pharm. Bull. 30, 3461-3465.
- Glusker, J. P. (1980). Acc. Chem. Res. 13, 345-352.
- Glusker, J. P. & Carrell, H. L. (1973). J. Mol. Struct. 15, 151-159.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kemmitt, T., Mills, A. M. & Gainsford, G. J. (2001). Aust. J. Chem. 54, 37-41.

- Matzapetakis, M., Karligiano, N., Bino, A., Dakanali, M., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Giapintzakis, J. & Salifoglou, A. (2000). *Inorg. Chem.* 39, 4044–4051.
- Mayers, S. M., Gormal, C. A., Smith, B. E. & Lawson, D. M. (2002). J. Biol. Chem. 277, 35263–35266.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.